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Summary. The virial theorem for a molecule in the relativistic clamped-nuclei 
approximation is derived. The individual energy contributions A (momentum 
energy), B (mass energy), T = A + B (kinetic energy) and V (potential energy) are 
expressed in terms of E, dE~dR (derivative w.r.t, the nuclear coordinates) and the 
relativistic correction OE/Oct 2 (derivative w.r.t Sommerfeld's fine-structure constant 
~). If E and ~?E/~R are known as functions of ~, then all individual energy terms 
are also known as functions of ct. As an example, numerical results for H~ are 
presented. The relativistic and nonrelativistic potential energy curves and the 
paradoxical behavior of their different contributions are analyzed and interpreted 
in both the large R and short R ranges. 

Key words: Diatomic molecules - Virial theorem - Hydrogen - Relativistic effects 

1 Introduction 

The virial theorem [1] is a very useful tool to acquire a deeper understanding of the 
behavior of physical systems. A very simple example is the nonrelativistic atom [2]. 
This case has early been extended to nonrelativistic molecules [see e.g. 3, 4] and to 
relativistic atoms [see e.g. 2, 5, 6]. Here we will investigate the case of relativistic 
molecules. 

In nonrelativistic quantum mechanics, the total energy consists of two terms, 
the kinetic energy T, and the potential energy V, which both can, with the help of 
the virial relation, be obtained from the total energy alone (and from its derivative 
with respect to the internucelar distance in the case of a molecule). In relativistic 
quantum mechanics, however, there are three energy terms (the mass energy B, the 
momentum energy A, and the potential energy V), and so far no relation was 
known to obtain them individually from the total energy. 

In Sect. 2 we will derive such relations between the relativistic molecular energy 
contributions, and the total energy and its derivatives. These relations are obtained 

* Dedicated to Professor W. Kutzelnigg on the occasion of his 60th birthday 
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by scaling techniques analogous to the ones used for the nonrelativistic virial 
theorem. In Sect. 3 we investigate the virial relation for the case of the H~-molecule 
on the basis of accurate numerical calculations. They were performed with the help 
of the relativistic double perturbation theories of Rutkowski and Schwarz [7, 8], 
using the form of this approach as proposed by Kutzelnigg 1-9] under the name 
"direct perturbation theory". Our results are summarized in Sect. 4. 

2 Theory  

We assume that the Hamiltonian may be written as: 

~q~(~) = ~ + .,i(p) + ~ ( r ) ,  (1) 

where for a Dirac one-electron diatomic molecule: 

/~ =/~'m c 2 with /~' =/~ - 1, (2a) 

.zi = ~'i0c, (2b) 

17"= Z i Z 2 / R t 2  - (Z1/IR1 - rl + Z 2 / I R 2  - rl). (2c) 

Here we use atomic units (m -- e -- h = 1, so c = l/e; however we still keep m in the 
equations) and the other symbols have their standard meaning. R and r are the 
nuclear and electronic coordinates, respectively. In the clamped-nuclei approxi- 
mation: 

ffIR(r)" ~R(r) = ~R(r)" ER. (3) 

where 

f-~ -] 
Er=(~rlHrl~r), with ~ a = [ ~ ]  (4) 

1 1 

may be split up into the following contributions er: 

E = T + V, (4a) 

T = a + B, (4b) 

V = V+ + V_. (4c) 

Here we have omitted the subscript R for convenience. The individual energy 
contributions 8 are given by: 

h = < ~ I / i l T >  = 2Re(Tt+ I#'Pc[ ~ - > ,  

B = <~] B I ~ >  = - 2mc 2 <7 t -  I ~ -  > = - 2 m c 2 S - ,  

V+ = < ~ _ + l V l ~ + ) ,  s +  = Ce_+ l~+) .  

i.e. S_ + S+ = 1. In the nonrelativistic limit, 

~ o -  = ~ o  + : 
2mc 

E o =  To + Vo, 

To = Ao + Bo = ½Ao = - Bo = (~o+  li02/2m] ~o+ ), i.e. Ao + 2Bo = 0, 

Vo=Vo+,  S+ = 1  and V o - = 0 ,  S _ = 0 .  

(5a) 

(5b) 

(5c) 

c -  1 = ~ ~ 0, w e  obtain with 

(6a) 

(6b) 

(6c0 
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Introducing the dilatation generator [6]: 

d = r ' ~ r  + R" d--~, (7) 

we find that, for an eigenfunction ~YR(r) of/tR(r): 

^ ^ d E  
(~R] [G, Hi]  (/JR) = R ' ~  = R ' E ' .  (8) 

Since for Coulombic potentials: 

[ G , / t ]  = - A - l?, (9) 

we obtain the re la t iv i s t ic  d ia tomic  vir ial  t heor em  in the following equivalent forms: 

A =  - V - R . E '  

= - 2 E  - 2 R .  E '  + (A + 2B) ,  

B = E + R . E ' ,  

T =  - E -  R . E '  + (A + 2B) ,  

V = 2E + R. E'  - (A + 2B). 

(10a) 

(10b) 

(10c) 

(10d) 

This yields (see Eq. (6b)) the well-known nonrelativistic limit: 

To = A o / 2  = - Bo = - Eo - R ' E D ,  (l la) 

Vo = 2Eo + R ' E 6 .  (lib) 

In the nonrelativistic case, both energy contributions To and 1Io, and also 
Ao, Bo, Vo +, Vo- are all uniquely determined by Eo and E6. In the relativistic case, 
however, the single virial relation is not sufficient to obtain them individually from 
E and E'  alone. Searching for an additional relation, we form the scalar product of 
(~P-I with the lower two lines of the Dirac equation (see Eqs. (1) and (2)), add the 
conjugate equation and obtain: 

A + 2B = - 2V_ + 2S_ .E = {(/~V) -- B . E } / m c  2 oc 0(o~2). (12) 

Still a term in addition to E and E' is needed, for instance - 2V_ = ( B l ~ ) / m c  2, in 
order to obtain A, T, V individually. 

Furthermore, in analogy to Eq. (7), we form the operator a 2 ~0"" ~ = - -  l C  v~"  

Operating on the vanishing expectation value (~u I - 2(H - E ) I ~  ), one obtains, 
according to the Hellmann-Feynman-theorem [20]: 

0 = ~2 ~ ( ~ e l  - 2(B - E)I ~e) 

(13a) 
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which yields (compare Eq. (3.12) of Ref. [18]): 

0 = / ~ A + 2 / 3 - c d E d c  ~ / '  

that is: 

(13b) 

dE 
A + 2B = - 2o~ 2. -~2. (14a) 

This is the relativistic generalization of Eq. (6b). Expanding Eq. (14a) in powers of 
~z, one obtains for the n th order: 

I A . + 2 B . =  - 2 n E . ,  n = 0 , 1 , 2 , - " .  I (14b) 

In order to obtain the different energy contributions individually, one only needs 
d E .  

E in the case of a nonrelativistic atom. One needs ~-~ in addition in the case of 

d E .  
a nonrelativistic molecule; and one needs ~ m addition in the relativistic cases. 

We can now express the energy contributions of a relativistic molecule as: 

A =  - 2 E - 2 R ' d E  dE dR - 2~2" d~ ~ '  

dE 
B = E + R ' - ~ ,  

dE dE 
T = - E - R.  ~ - 2~ 2. d------2, 

dE dE 
V = 2E + R" ~ + 2~ 2 • d ~ 2 ,  

(15a) 

(15b) 

(15c) 

(15d) 

The different relativistic orders A., B., T. and V. can individually be expressed by 
E. and E" = dE./dR: 

A. = - (2 + 2n) E. -- 2RE'., 

B. = e .  + Re:,, 

T. = - (1 + 2n) E. -- RE~,, 

V, = (2 + 2n) E n -}- RE~,. 

(16a) 

(16b) 

(16c) 

(16d) 

Equations (16) show that the partial cancellation of T and V becomes more 
and more pronounced for higher relativistic orders. To obtain V_. and 
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11+. = V ~ -  V_., E~ and E~ are needed not only for i =  n but also for i <  n: 

V_. = n.E.-½ ~ E._,.(E,_, + RE~_~). (16@ 
i = 1  

3 Application to H~ 

The energy contributions of H~- as a function of In R have been accurately 
calculated numerically at 20 R-values using our relativistic perturbation approach 
[8]. They are shown in Fig. la. For such a light molecule, the curves are indistin- 
guishable from the nonrelativistic ones. Therefore the first- and second-order 
relativistic corrections of order c~ 2 and a 4, resp., are shown separately in Figs. lb, c. 

3.1 Separated atoms 

A t  R -+  o o ,  w h e r e  R .  E '  = 0 ( f o r  H + H ÷ e.g.) ,  w e  o b t a i n :  

A = - 2 ( E  + dE/d  I n  c~ 2) ~ - 2 E o  - 4 E 1 ,  

B = E ,  

V = - A .  

(17a)  

(17b)  

(17c) 

2- a) REL ~ C2*a . l l -  b )  OREL 1 

1 
a . u .  ~, 

T+B 
1 ~ A S_ i?, " . . . . . . . .  A 

. . . . . . . . . .  T S_ 
T+B 

~..~.,'..Y.+ ":. o,  . . . . . . . . . . . . . . .  lnR V + - V _  
lnR 0 l~g" 2_  _ _3 _ _ 4~ [_- E 

0 ~ . . . . . . . . .  v B  
.:: ~ :.: :$=.~-.=.e..,e -.~ 4 ~ -~-4 . . . . . . .  + V _  

. ,(:.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i .9 

/ / v _  

' B 2 4 6 

E 

-1 . . . . . . . . . .  V 
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Fig. l a - e .  Total  energy E and individual 
energy contributions e of H~  versus 
In R (R = internuclear distance in a.u.). 
Equil ibrium distance is Re ~ 2 a.u. (In R = 0.69). 
a) REL is the relativistic energy in a.u., which is 
here indistinguishable from the zeroth order 
nonrelativistic contribution. 
b) DREL1 is the first-order relativistic 
contr ibut ion ~ ct z. 
e) D R E L 2  is the second-order relativistic 
contr ibut ion ~ a 4. 
A: - - ,  B: - - - ,  E =  T +  F: - - ,  
S_ = ( k U _ l T _ ) : - - - ,  T = A + B :  . . . . . .  
A + 2 B = T + B :  . . . . .  , V =  If+ + F_: . . . . .  , 
V + : - - - ,  V_: . . . . .  V÷ - V_: . . . .  
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In accordance with Eqs. (10, 12, 14, 16) and (17), the analytical ls-eigensolution of 
the hydrogen atom [10] yields (compare e.g. [21]): 

A =  - V =  l + ½az +-~ a~ + • 

B = E = - ½ - ~ :  - f i  ~" + 

T = A + B =  ½ + ] a l  + t-~a4 + 

A + 2 B =  ¼ ~ z + ¼ a 4 +  . 

V+ = - 1 - - ¼ a  2 - -1 - -~a  4 -l- 

V_ = _ ¼ ~  _ ~ ~4 + 

v + - v _ =  -1 ,  

• $ 

(18a) 

(18b) 

(18c) 

(lSd) 

(18e) 

(18f) 

(lgg) 

(18h) S_ = ¼~z + & a 4  + . . . .  

All these expansions converge better than X(Za) 2 for a hydrogenic atom with 
nuclear charge Z. In the relativistic case, A + 2B = A + 2E = T + B deviates from 
0 by an order of e2. For  Coulombic systems this deviation is positive in any order 
because of Eqs. (14). The factors in Eqs. (18) in front of ct °, ~t 2, ~4 are the limiting 
values for large R in Figs. la, b, c, respectively. From Eqs. (17, 18) follows: 

T / -  E = l + ½a2 + ~aa4 + " " g l + 2E1 /Eo  > I = T o / _  Eo,  (19a) 

VIE = 2 + ½a 2 + ~aa 4 + " "  .~ 2 + 2 E t / E o  > 2 = Vo/Eo, (19b) 

- V / T  = 2 -- ½o~ 2 - ~a4 . . . .  ,.~ 2 - 2E~/Eo  < 2 = - Vo/To. (19c) 

For  nonrelativistic atoms: 

2To = Ao = - Vo = - 2Bo = - 2Eo, (20) 

whereas for relativistic atoms (first order expressions are given in parentheses 
underneath, e = [Eol and 6 = IEID: 

2T > A =  - V > - 2 B =  - 2 E .  (21a) 

(2e + 66) (2e + 46) (2e + 25) 

This holds for total energies (compare the numerical data of Desclaux [11]). 
Concerning orbital energies we observe that (compare Schwarz et al. [12]), except 
for the innermost shells (K, L), where - V > - 2E > T > - E: 

2 T > A >  - V~>T> - 2 E ,  (21b) 

see Table 1 for the U atom (the other atoms behave similarly)• Note that potentials 
like the Hart ree-Fock one decrease faster towards the nucleus than the Coulomb 
potential, ,~ r -  ~, because of significant screening by the core electrons far from the 
nucleus. In this case r. Of~Or > - Vso that A > - Vholds in general for orbitals. 

The hydrogenic Schr6dinger Hamiltonian and its lowest order relativistic 
correction read: 

=/~o +/41 + " " ,  (22) 

~Io = To + Vo = P2/2m - Z / r ,  (22a) 

I41 = T1 + 17"1 = -- p4~2/8m3 + Z e 2 / 2 m 2 " ( ~ ' 5 ( r )  + 1/r3"l'~) • (22b) 

The first-order "direct" relativistic correction energies for the H-atom are: 

A d T = (go[  7~ [ go)  = - -  ~8 ~2 , (23a) 
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Table 1. Orbital energy contributions (in a.u.) for the U atom. (Where the order of values deviates from 
the one given in the headline, it is noted explicitly) 

Orbital 2T > - V > T > - 2E 

ls 12818 
2s 3192 
2pl/2 3177 
2p3/2 2021 
35 1021 
3pl/2 1006 
3p3/2 716 
3d3/2 699 
3d5/2 645 

5f5/2 22.7 
5f7/2 21.5 
6d3/2 4.75 
6d5/2 4.19 
7s 2.53 

10688 6409 < 8558 
2402 1596 < 1612 
2365 1588 1553 
1646 1011 < 1271 
717 511 413 
696 503 386 
518 358 321 
489 350 278 
455 323 265 

11.7 11.3 0.694 
11.1 10.8 0.639 
2.57 2.37 0.386 
2.28 2.10 0.367 
1.47 1.27 0.405 

which is negative,  and: 

A~ V =  (~o117"11 k~o) = + !~22 , (23b) 

which is posit ive.  However ,  because  of the " indirect"  con t r ibu t ions  due to relat iv-  
istic o rb i t a l  re laxat ion:  

A ~ T =  ( g i l l  7~o1~o) + (7 'o1Z?ol~el)  = + ~2, (24a) 

the to ta l  relat ivist ic  f i r s t -order  cor rec t ions  are of  oppos i te  sign to the direct  ones, 
namely  A 1 T =  + 3/8c~ 2 and  A ~ V =  - 1/2 ~2, as given in Eq. (18). C o m p a r e  the 
discuss ion in Sect. 2.4 of Ref. 1-18]. 

3.2 Recapitulation." Nonrelativistic limit o f  the molecule 

3.2.1 Very large distances (R > 20, ln R > 3). The d o m i n a n t  in te rac t ion  is the 

a -4 dipole  po la r i za t ion  of a H - a t o m  by a p ro ton ,  i.e. E = E(H) - ~ R , where a is the 

d ipo le  po la r izab i l i ty  of H. In  the following, changes  of  expec ta t ion  value e due to 

b o n d  fo rma t ion  will be deno ted  by  Be = e(R) - e( ~ ), i.e. BE = - a R - 4  F r o m  
2 " 

the vir ial  re la t ions  of  Eqs. (16) we ob ta in  for the different b o n d  energy con t r ibu-  
tions: 

BAo/BEo = + 6, (25a) 

BBo/BEo = -- 3, ( 2 5 b )  

BTo/BEo = + 3, (25c) 

BVo/BEo = - 2 .  (25d) 
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10 b) DREL I Be/BE 

x .  : : : i 

.° ° i, 

Fig. 2a, b. Bond energy contributions Be = e(R) - e( oo ) from A, B, Tand  V~ divided by the total bond 
energy, BE = E(R) - E(  0o ). See legend of Fig. 1. Since BEo is negative, an increase of the curves 
in Fig. 2a means a decrease of the individual contributions. However, BE1 is positive in the R-range of 
Fig. 2b 

For decreasing R, Ao, To and Eo decrease while Bo and Vo increase. Note that, 
according to Eq. (11), Eo and Bo vary for large R in opposite directions for any 
Eo ~ - R-"  with n > 1 (and Vo increases for n > 2), and that polarization in- 
creases V. Polarization distorts the hydrogen atom towards the proton so that the 
electron is, on the average, more distant from its "own" attracting nucleus. The 
spatial region available for the electron thereby becomes larger, corresponding to 
an even larger T-decrease (Heisenberg's uncertainty relation). That is, the energetic 
stabilization due to polarization is caused by kinetic energy lowering, partially 
compensated by potential energy increase. This paradox at large R is similar to the 
one of covalent bond formation at R e and had already been elucidated by Rueden- 
berg 1-14] and Kutzelnigg 1-15]. 

While the first order polarized wavefunction is already sufficient to obtain the 
correct polarizability and polarization energy BE [17], the second-order wavefunc- 
tion is needed to obtain the correct polarization effects on the individual energy 
contributions, i.e. the ratios of Eq. (25). The long-range energy changes are too 
small to be visible in Fig. 1. Therefore we have plotted B~/BE explicitly in Fig. 2. 
The values of Eqs. (25) are the limiting values for large R in Fig. 2a. 

3.2.2 Medium large distances (10 < R < 20, In R ~ [2.3, 3]). Hyperpolarization 
effects become important. For BE ~ R-6,  for instance, one obtains from the virial 
relations: 

B A / B E - -  10, 

B B / B E  = - -  5, 

B T / B E  = 5, 

B V / B E  = -- 4. 

These values are obtained near R = 12 (ln R = 2.5), see Fig. 2a. 

(26a) 

(26b) 

(26c) 

(26d) 

3.2.3 Intermediate distances (4 < R < 10, In R 6  [1.4, 2.3]).  The kinetic energy 
To = ½Ao = - Bo decreases further (see Fig. la, enlarged in Fig. 3a) with decreasing 
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Fig. 3a-e. Bond energy contributions Be versus In R, see legend of Fig. 1 
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R because of the beginning of the formation of the covalent bond by quantum 
mechanical interference, i.e. by electron sharing of the atomic valence electron 
between the two atoms (Ax  increase and Ap decrease according to Heisenberg's 
uncertainty principle, see [13-15]). Simultaneously, down to R ~ 5 a.u., the elec- 
tron density accumulates in the overlap region around the bond center, reducing 
the density near the nuclei so that V (and B) also increase furthermore 
(i.e. decrease in value). Accordingly all energy contributions, if divided by V or T, 
vary less. 

3.2.4 D&tances  around Re. For decreasing R-values the electron density distribu- 
tion now begins to contract towards the nuclei [14], so that finally V drops below 
its asymptotic atomic value, and T increases above its asymptotic value (see 
Fig. 3a). At the equilibrium internuclear separation, B and E become equal again. 
At shorter distances, the total energy starts to increase, corresponding to the fact 
that the electronic potential energy decrease becomes more and more compensated 
by the internuclear repulsion. 

The behavior of A, B, T, V and E around Re is enlarged in Fig. 4a. Expanding 
the energy in a Taylor series around Re with x = R - Re, 

X 2 X 3 
e = E e + k T - - b ~ +  . . . ,  (27a) 

we obtain, omitting the index o for the nonrelativistic case, 

X 2 
-- A / 2  = - T = B = E e .-I- kRex  + (3k - b R e ) - ~  . . . .  (27b) 

X 2 
V = 2Ee "-}- kRex  "-I- (4k - b Re)~- . . . .  , (27c) 

i.e. V, B, - T and A/2  have the same slope k ' R e  at Re. Note that there are two 
contributions to terms like k x  2 etc., one from E and the other one from 
R . E '  = (Re + x) -  e ' .  
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3.3 Relativistic corrections to the molecular potential curve 

The zeroth-order contributions to .~, - / ~ ,  7 ~ correspond to + pZ. They are posit- 
ive. For decreasing R, they decrease at first, and then increase strongly for R < 4 
(In R < 1.3) (see Figs. la, 3a), as explained above. The relativistic first-order con- 
tributions correspond to - p 4  (i'~ ,,~ -i'g/2mcZ). So one might expect that 
A1, T1, - B ~  are negative and increase at first and then decrease. However, 
A~, T~, - B~ are positive at large R (see Sect. 3.1 and Figs. lb, 2b), and they exhibit 
a more complicated behavior at shorter R (see also Fig. 3b), due to the interplay of 
"direct" and "indirect" contributions mentioned in Sect. 3.2. 

3.3.1 Large-R dipole-interaction range (R > 20, lnR > 3). The relativistic bond 
energy changes are due to the relativistic changes of the dipole polarizability, the 
lowest orders of which are (see e.g. [16]): 

ao = 4.5, al = - ~ 2 ,  a2 = 0.1175 . . . ct 4. (28) 

The relativistic reduction of the polarizability (a~ < 0) reduces the value of the 
(negative) binding energy, BEt = + 7ct~/3R 4. Concerning the individual contribu- 
tions, it follows from the virial relations of Eqs. (16) that: 

BA,/BE, = + 6 - 2n, (29a) 

BB,/BE, = - 3, (29b) 

BTn/BEn = + 3 - 2n, (29c) 

BVn/BE, = - 2 + 2n. (29d) 

The n = 1 first-order ratios are the values for large R in Fig. 2b. Since a~ is negative, 
E~ and T1 increase, and B~ decreases at first for decreasing R. For large R, 
T determines the sign of the bond energy: BTo and BEo are both negative 
(bonding), BTI and BE1 are both positive (antibonding relativistic correction). This 
is as expected above. 

3.3.2 Intermediate R values. To and Vo (Fig. 3a) change their trends around R ~ 4 
to 5. At shorter R-values To increases and Vo decreases, due to the beginning 
of orbital contraction, and they reach their asymptotic values again. T~ and 
111 (Fig. 3b), however, already change their trends around R ,~ 6. For distances 
down to R ~ 3, Ti decreases (bonding), and 1/1 increases even more so that 
E1 remains antibonding. The relativistic correction to the virial relation, 
B(A + 2B), is negative in this R-range. The second order corrections (Fig. 3c) are 
comparatively small. 

3.3.3 Distances around R e (see Figs. 2 and 4). To ~ ½Ao increases and Vo ~ Bo 
decreases for decreasing R, so that Eo becomes stationary at the negative value 
BEo, because the dominating contribution V0 is negative. Because V~ decreases 
more strongly with decreasing R than T1 increases, E1 decreases; accordingly 
a relativistic bond length contraction results. While V÷ 1 and V_ x have the same 
value for the separated atoms, their contributions to the bond energy are opposite. 
From the virial relations one obtains for the slopes at Re: 

BA'~ = -- 3ql + 2klRe, (30a) 

BB'~ = ql + k~Re, (30b) 
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Fig. 4a-c. Energy contributions e, and E, in 10 - 2  

a.u. with respect to their equilibrium values at the 
relativistic Re = 1.99716 a.u., A~, versus R(a.u.). 
See legend of Fig. 1. 

BT~ = - 2ql - -  k l R e ,  (3Oc) 

BV~ = 2.5ql + ktRe,  (30d) 

BE[ = 0.5 ql,  (30e) 

where ql = E' - E~ and kl = E" - E~' at the relativistic Re. Note  that kl is not the 
complete relativistic change of the force constant, since the anharmonicity contri- 
bution due to the relativistic change of R e is not included, see [8]. 

Second order relativistic bond energy corrections are shown in Fig. 4c. They are 
numerically rather small. While the atomic first- and second-order corrections are 
of the same sign (negative) for the atom, BEt changes sign near Re and BE2 is 
positive there. 

Conclusion 

We have derived the virial theorem for relativistic molecules with damped nuclei. 
The particle interactions are assumed to be homogeneous  in r-1,  i.e. comprizing 
the electrostatic Coulomb and magnetic Gaunt interactions. Then, due to relativ- 
ity, the term (A + 2B) has to be added (Eqs. (10)) to the nonrelativistic virial 
relations of Eq. (11). (A + 2B) vanishes in the nonrelativistic limit. It can be 
expressed with the help of the lower component's  contribution to the energy 
(Eq. (12)) or with the derivative of  the energy with respect to ~2 (Eq. (14a)). All 
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relativistic orders of (A + 2B) can then be expressed by the respective orders of the 
total energy E (Eq. (14b)) so that each relativistic order of A, B, T and V can be 
expressed by the respective order of E and dE~dR alone (Eqs. (16)). While the virial 
theorem for molecules contains dE~dR, the relativistic virial theorem also contains 
dE/B, 2 (Eqs. (15)). We note that retardation of the electron-electron interaction 
will introduce small deviations from these relations. 

Concerning the H~ molecule, the relativistic change of the potential energy 
with R is negligible at very large R, while the relativistic correction of the 
kinetic energy is opposed to the binding behavior of the nonrelativistic kinetic 
energy, corresponding to the relation 7~1 ,-~ - ~2. At medium distances, typical for 
covalent bonding, where Vo decreases and To increases, the relativistic correction 
to the bond energy changes from bond-destabilizing (BE1 > 0) at larger R-values to 
bond-stabilizing at shorter R-values. Since dBE1/dR > 0 in this R-range, the relativ- 
istic correction is always bond-contracting. Obviously, Gordy's rule 1-19], namely 
that bond stabilization goes proportional to bond contraction, will not hold for 
relativistic effects in general. It will hold only if R e is below the critical value where 
BE1 becomes negative. For H~, which has a very short bond length, (R e = 2), R e is 
indeed smaller than Refit = 2.25. dBE1/dR is positive for medium R-values because 
dB V1/dR is so large. This may be rationalized as follows: While the direct relativis- 
tic contributions to V are antibonding and to T are bonding (Eq. (18b)) the 
synergetic bonding and relativistic orbital contractions decrease V and increase T. 
These rules hold for bonding due to so-interactions and for the special case where 
there are no core shells. 
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